
Aural feedback, in the sense of hearing what one is playing, 
is essential for any kind of musical performance. If the pitch 
of a note turns out to sound a bit too high, it is immediately 
adjusted by the musician. This process can be transferred 
to the realm of sound synthesis, and to what we will call 
adaptive synthesis models. The goal, however, will be much 
more modest than to model the interaction between a real 
musician and an acoustic instrument. It will also be different, 
since self-adaptive synthesis is a self-organizing process.

In adaptive synthesis, the use of feature extraction is cru-
cial. The generated sound signal is analysed whilst being 
produced, and the analysis simultaneously influences the 
sound generator’s control parameters. We will discuss 
Pierre Schaeffer’s thoughts on listening and sound classi-
fication, and try to relate them to methods of feature ex-
traction. Finally, we describe one of the simplest possible 
adaptive synthesis models in detail, and find that it is not so 
simple, after all.

What is Adaptive Synthesis?

In adaptive synthesis, there is a conceptual tripartition of 
the synthesis model into a generator, a low-level feature ex-
tractor (also called attribute analysis), and a mapping from 
analysed features back to the generator, although the dis-
tinction between these may become blurred. Even a single 
sine wave oscillator can provide astoundingly rich sonic 
possibilities, as we will see, since fast modulation can oc-
cur, which in effect turns it into an FM instrument.

Synthesis models are often divided into three broad class-
es: physical, perceptual, and abstract models. As much as 
in the perceptual models, feature extraction does play an 
important role in adaptive synthesis. But whereas percep-
tual models try to develop perceptually relevant and intuitive 
representations of synthesis parameters, adaptive synthesis 
escapes such goals. It differs also from physical modeling, 
as it does not try to model any known physical system. 

Adaptive synthesis may be viewed as taking an interme-
diate position between an instrument and a tool for algo-
rithmic composition. It is common to refer to such digital 
instruments as ‘composed instruments’ (Schnell & Battier 
2002), since the instrument incorporates a bit of a score 
function, and is often constructed with a particular and lim-
ited musical purpose in mind. In the extreme, the instrument 
becomes synonymous with the composition. This clearly 
applies to adaptive synthesis models, in the sense that for a 
sufficiently elaborated model, given fixed parameter values, 
it might produce a musical sequence that is varied over a 
lenghty time span.

Expectations of what an instrument should be vary strongly 
amongst practitioners of digital instruments. Magnusson 
and Hurtado (2007) pose the relevant question of how the 
indeterminacy or “entropy” of a digital instrument is expe-
rienced by the user. They found that for most users, some 
indeterminacy can be tolerated and even welcome in an 
acoustic instrument, but in digital instruments, it is often 
seen as a flaw. The exception came from some practitio-
ners who deliberately sought out faults or software glitches 
(cf. the term ‘glitch’ as a musical genre label). Adaptive syn-
thesis can be particularly prone to sluggish reactions or very 
long transients to parameter changes, with certain conse-
quences for live performance.

Aural feedback is indispensable in musical performance. 
Additional haptic1 feedback comes for free in acoustic in-
struments, and is sometimes incorporated in controllers for 
digital instruments as well. Musicians continuously adjust 
aspects of their playing such as embouchure in a wind 
instrument, or speed, pressure and angle of bowing in a 
string instrument. This adjustment happens mostly uncon-
sciously in an expert performer, as a response to the aural 
and haptic feedback from the instrument. Obviously, this is 
in close analogy with an adaptive synthesis system. 

Various forms of interactive computer music have been de-
veloped, some of which clearly utilize a strategy of adap-
tive synthesis. George Lewis describes his interactive work 
with computers in terms of a negotiation, a context highly 
suitable for improvisation. The use of feature extraction 
is crucial. Such features as volume, velocity, durations of 
sound and inter-onset duration, pitch and several others 
are extracted and used to control the programs’ response 
(Lewis 1999).

It is interesting to note that a musical automaton need not 
be a completely autonomous device. In order to get any 
ongoing musically interesting response, the easiest way 
would be to regularly supply new input to the machine. Si-
nan Bökesoy developed adaptive synthesis with an empha-
sis on the emergence of multiple temporal levels of change, 
using granular synthesis (Bökesoy 2007). According to 
Bökesoy’s description, these systems are viewed in terms 
of dissipative structures, that need to be kept in motion by 
an incoming energy supply; the ‘energy’ for instance being 
user input. 

Agostino Di Scipio has done extensive work on a variant of 
adaptive synthesis that involves the performance space as 
a part of the system, and which has resulted in a series of 
works entitled audible ecosystems (Di Scipio 2003). Ambi-
ent sound is picked up by microphones, analyzed and pro-

1 Examples of haptic feedback in digital instruments could be a knob or slider that yields resistance to rapid motion. The knob is not merely a sensing device, but 
one that produces a mechanical force.



cessed in a computer, and sent out via loudspeakers in the 
same room. The processing often has the purpose of coun-
terbalancing features in the sound. If the amplitude is low, 
gain is increased, if too high, it is reduced. These systems 
often involve several interconnected feedback loops, which 
only need some ambient noise to get started, and that are 
able to sustain a sonic process on their own. It should be 
noted, that there is no general agreement on terminology, 
so what is called adaptive synthesis in this paper, may in 
other places go under such names as autopoiesis2 or self-
organizing systems.

The way the components of an adaptive synthesis model 
are connected is of great importance. A general scheme of 
analysis—modification—resynthesis (fig. 1a) has been fre-
quently employed in additive synthesis and linear predictive 
coding. Remove the input, and connect the output to the 
attribute analyzer, and we have the self-adaptive model (fig. 
1b). More complex structures are possible, such as cross-
adaptive synthesis (fig. 1c). In a nested model, the genera-
tor itself is an adaptive synthesis model, but such models 
are likely to become very complex. 

Adaptive Synthesis Models are
Dynamical Systems

What does a typical output from an autonomous adaptive 
synthesis system sound like? Quite naturally, it depends on 
the details of the particular synthesis model in question, but, 
deeming from a few preliminary experiments, some general 
traits can be distinguished. Typical findings include:

• Self-adaptive synthesis may exhibit a wide range 
of behaviour, including startup transients gravitat-
ing towards a relaxed state; subtle and irregular 
variations; in some cases sudden and unexpected 
changes after periods of stability. Under certain cir-
cumstances, these systems may become chaotic.

• Prominent hysteresis effects are likely to occur; 
i.e. there may be a general sluggishness in the re-
sponse to actions, and the response to the same 
control parameter settings may differ depending on 
the immediate past history of the system. The win-

2 Literally ‘self creation’, as in a system capable of maintaining itself while exchanging matter or energy with its environment, such as a living cell.

Fig. 1. S: synthesis module, A: attribute analysis, M: mapping. The synthesis 
model is also controlled by user supplied parameters, p. Left: a recursive 

structure for selfadaptive synthesis. Right: crossadaptive synthesis.

dow length of the signal attribute analysis is likely 
to have a strong impact on the types of behaviour 
that the model will display. 

• There is reason to believe that these systems 
easily become computationally irreducible, that is 
to say, one cannot predict the output at a given 
time in the future from the initial conditions and 
parameter values, but one has to run the entire 
calculation up to that moment. These models also 
provide striking examples of emergent phenome-
na. Decisions on sample level have implications on 
much higher temporal levels, and there is very little 
to be inferred about the system’s actual behaviour 
only from its rules. 

Linear source-resonance models may capture the dynam-
ics of many acoustic musical instruments rather well, but on 
closer inspection nonlinearities are often found in the system. 
Substituting nonlinearities for linearities in a dynamic system 
may imply drastic qualitative changes, depending on the 
particular nonlinearity and where it is inserted. Memory-less 
nonlinear systems also do not provide the same richness of 
behaviour that awaits us in a dynamic nonlinear system. 

Distorted amplifiers and distortion effects are often mod-
eled as memoryless devices. When they are modeled as 
dynamical systems, it is typically done by Volterra series 
expansions, i.e. polynomials of the signal variable includ-
ing delays (Schattschneider and Zölzer 1999). On the other 
hand, a sufficiently general time-invariant nonlinear filter 
may be described by the equation

(1)

where ƒ (·) is any suitable nonlinear function. Recursive non-
linear filters are not so easily represented by Volterra series, 
whereas their implementation follows directly from the equa-
tion (1). In order to describe the behaviour of some of these 
nonlinear filters, one may resort to study their responses 
to impulses of varying amplitude, in effect treating them as 
maps (Holopainen 2007). In fact, virtually all of the signal 
attribute extractors that are so important in adaptive synthe-
sis, may be thought of as (non-recursive) nonlinear filters.

Maps (iterated functions) may serve as a framework for the 
study of adaptive synthesis. The essence of adaptive syn-
thesis is an iterated loop of synthesis _ attribute extraction 
_ synthesis parameter adjustment _ synthesis. This loop is 
generally traversed once per sample, although the rates of 
attribute extraction and parameter updates may be slower. 
Maps with delayed variables can be dealt with by trans-
forming them into higher dimensional delay-less systems. 

If the adaptive synthesis models are to be studied as iter-
ated maps, then it is obvious that there is a large delay 



caused by the attribute analysis. Even for short analysis 
windows, hundreds of samples of delay could result, or in 
more realistic cases, tens of thousands. The reason for this 
should be seen in relation to auditory perception, where in-
coming information needs to be integrated over a temporal 
window of some duration.

Auditory Perception and
Feature Extraction

Applications of feature extraction arise in several fields, 
such as clinical diagnosis of voice disorders (Hadjitodorov 
and Mitev 2002), music information retrieval, score follow-
ing and automated transcription, in adaptive audio effects 
and in sound synthesis. In concatenative synthesis3, a tar-
get sound is recreated by matching perceptual features to 
sound fragments from a database of other sounds. While 
a large and varied database and efficient matching criteria 
allows verisimilar reconstruction of the target sound, a more 
restricted database can be used in a way reminiscent of 
cross synthesis—say, to articulate the morphological shape 
of Rite of Spring with a collection of saxophone samples 
(Sturm 2004). Feature-based synthesis (Hoffman & Cook 
2006) also tries to match a feature vector against sounds 
produced by a synthesizer in a way that is comparable to 
that of concatenative synthesis.

Adaptive audio effects have the feature extraction in com-
mon with adaptive synthesis. Dynamic processing (com-
panders, noise gates, etc) are the earliest known examples 
of adaptive effects. The sound of an auto-tuner applied to 
vocals is often used and abused, and should also be fa-
miliar. Another example is selective time stretching, where 
for instance transients can be left in the original time 
scale, whereas quasi-stationary portions of the sound are 
stretched (Verfaille and Arfib 2001). Adaptive effects can 
provide a great coherence between the input sound and 
the applied effect. 

As mentioned above, the length of the temporal frame 
that is analysed is an influential factor in determining how 
a self-adaptive synthesis instrument turns out to function. 
Pitch perception is not possible for sound bursts lasting 
shorter that at least one or a few periods of the waveform. 
As the length is increased, the pitch percept gradually be-
comes more accurate, to a certain limit. Likewise, loud-
ness perception does not follow the immediate pressure 
variations of the waveform, but takes an average over an 
extended time window. The same obviously holds for any 
perceptual attribute.

Studies of detection thresholds for short sound bursts, si-
nusoidal or noise, have shown that there is a time-intensity 

3 Concatenative synthesis was first used in speech synthesis. In the last decade, its utility in musical applications has been seen, where its capability of realistic 
rendering of any sound rivals that of physical modeling.

trade; the shorter the sound, the louder it needs to be in or-
der to get detected. If both time and intensity of the detec-
tion threshold are plotted on logarithmic scales, with time 
on the abscissa, then the slope of the curve is about -3/4 
in a range of durations from 5 periods to 500 ms (Eddins 
and Green 1995). It has been suggested that a mechanism 
known as temporal integration could predict these results. 
In essence, temporal integration is modeled as the convolu-
tion of the input signal with a filter impulse response, which 
is often assumed to be exponentially decaying. This can be 
directly compared to a common implementation of RMS 
amplitude extraction, which uses a one pole filter that has 
the exponentially decaying impulse response. There are, 
however, other possible implementations of RMS amplitude 
extraction, such as calculation from a moving average filter, 
where the impulse response has the shape of a rectangu-
lar box. In adaptive synthesis, the goal is not an accurate 
modeling of the auditory system, yet it may be convenient 
to have signal attribute extractors that can provide percep-
tually salient information. 

Higher level perceptual attributes, such as vibrato and 
tremolo, are in fact second order attributes, or descriptors 
of the time varying curves of the primary attributes. Hence 
these higher level attributes would always pertain to a lon-
ger time scale, and their perception would presumably in-
volve more neural processing, and perhaps the combina-
tion of several lower level attributes. Higher order attributes 
can be extracted from these basic descriptors, by analyzing 
them further.

Listening with Schaeffer’s
Typomorphology

Knowledge of the correlations between physical signal and 
auditory percept will help informing the choice of signal at-
tributes to analyze. In this context, the pioneering work of 
Schaeffer (1966) may suggest new criteria to analyze (for an 
excellent short introduction to Schaeffer’s typomorphology, 
see Thoresen 2007). This poses some difficulties however, 
since Schaeffer’s typomorphology is a phenomenologically 
oriented framework for classifying all conceivable types of 
sound fragments experienced as a unit. But an exact inter-
pretation of various Schaefferian terms is yet to be made, 
not to mention a practical signal processing implementa-
tion. On the other hand, Schaeffer is quite clear about the 
openness of the classification system. There is no attempt 
to arrive at a final classification of a sound object in a spe-
cific category. “Nous pensons en effet que le principe de 
notre classification permet d’assigner au même objet di-
verses cases selon l’intention d’écoute. La recherche d’une 
typologie “ absolue ” est illusoire” [In fact, we think that the 



principle of our classification permits us to assign different 
categories to the same sound object, depending on the lis-
tening intention. The search for an ‘absolute’ typology is 
illusory.] (TOM: 433)4.

With the metaphor of a loft where heaps of unsorted ob-
jects have accumulated, Schaeffer brings up the question 
of how to choose relevant sorting criteria. Should the vio-
lin be placed together with the logs just because both are 
made of wood, or should small objects be grouped togeth-
er in one place and large ones in another; or should one 
despair and give up, the loft being a place where one hides 
unsortable things away (TOM: 429)? Similarly, before de-
ciding upon a typology of sounds, the sorting criteria have 
to be chosen. Because this sorting should be carried out 
according to aural qualities only, one has to focus on the 
sound as such, and try to ignore what one knows of its 
causality and meaning.

Reduced listening, écoute reduite, is a central concept in 
Schaeffer’s system of thought, but it is a concept that some 
have found difficult to assimilate. In reduced listening, the 
attention is focused on the perceived sound as such, with 
any knowledge of its context, its meaning and its causes 
bracketed out. A total cutting-out of any anecdotal associa-
tions in the sound may be an unattainable ideal, but that is 
not to say that reduced listening is impossible. On the con-
trary, as Schaeffer discovered with the aid of a record player 
with a closed groove, the sillon fermé, repeated listening to 
a short sound fragment soon exhausted any possible inter-
est in its meaning and causes. Reduced listening is a matter 
of turning one’s attention towards morphological traits of 
the sound, a habit that is actually quickly acquired in the 
electroacoustic studio.

Schaeffer’s typology and morphology is based on the con-
cept of the sonorous object, l’objet sonore, which is consti-
tuted in the act of reduced listening. A first stage would be 
to identify the object, which may be delimited by disconti-
nuities in the sound. Next, a suitable category in the typo-
logical scheme would be identified, and finally finer details 
could be described through concepts from the morphology. 
Classifying and describing sound is challenging for many 
reasons, one of them being that depending on the type of 
sound, various traits do or do not exist. A vibrato requires 
pitch, for instance, and the degree of irregularity of this vi-
brato certainly requires the vibrato to be present in the first 
place. It should be noted that the same challenge may have 
to be met in automated signal attribute extraction, as one 
may imagine certain attributes that are not always appli-
cable as descriptors of the sound. 

One inventive aspect of Schaeffer’s typology, is to sort 
sounds according to their length. Short, percussive or 

4 My translations of the quotes from Schaeffer should not necessarily be taken as suggestions of how certain much discussed terms should be rendered in English. 
Henceforth, references to Schaeffer’s Traité des Objets Musicaux will be abbreviated TOM.  

impulsive sounds are classified in one category, as are 
sounds of medium duration, such as typical musical notes; 
and sounds of prolonged duration form a third group that 
is further divided into constant prolonged sounds, variable 
sounds, and iterated sounds. Other criteria sort sounds ac-
cording to their energetic articulation (entretien), and sonic 
substance, related to the spectral distribution (masse). As 
in the metaphor of the attic, the first sorting takes a fresh 
look at things and divides them into broad and somewhat 
surprising categories. But a prerequisite is that one applies 
reduced listening when characterizing the sound objects—
otherwise one risks relying on prejudice, in effect categoriz-
ing objects by other criteria than strictly aural ones.

As Godøy (2006) has pointed out, the categories may not 
have such a lofty origin after all, but may have a grounding 
in common gestural types. According to this line of thought, 
Schaeffer’s concepts can be understood in terms of em-
bodied cognition, where virtually all domains of thinking and 
perception are thought to be related to images of move-
ment. Embodied cognition proposes that perception is not 
merely carried out as a processing of sensory data, but 
rather as a re-enactment of whatever is perceived. Some 
of the evidence for this view comes from neurological stud-
ies that have found activation in motor areas of the brain 
when subjects are asked to imagine music. At least, it is 
obvious that impulsive, sustained and iterative types can 
easily be put into correspondence with gestures, but ac-
cording to Godøy, most or all of the typology and morphol-
ogy may be matched to gestures—the point is that “there is 
a gesture component embedded in Schaeffer’s conceptual 
apparatus which is on a more general and basic level than 
that of everyday causal listening, i.e. not on a level that the 
principle of reduced listening is supposed to lead us away 
from” (Godøy 2006: 154). 

Relating Schaeffer’s Criteria
to Signal Analysis

If Schaeffer’s typomorphology is to serve as inspiration for 
new signal attributes to analyze in the context of adaptive 
synthesis, one is practically restricted to criteria that are in-
dependent of the length of the sound object. This leaves 
criteria that deals with mass, granularity and gait (allure). 
The reason for this is that the signal analysis doesn’t oper-
ate on segmented sound fragments, but on a continuous 
stream. But even the perception of a static object is in flux. 
Godøy (2006) brings up the example of the Necker cube, 
with the spontaneous changes of its  perceived spatial ar-
rangement. An example more related to music would be 
the fact that a pulse stream of identical impulses is sponta-
neously grouped into twos or threes, no other elementary 
grouping is possible. The perception of a sound that is ex-



perienced as completely static (say, a sinusoid), would pre-
sumably also be faced with the effects of fatigue, although 
it is unlikely that changes in attention level would contribute 
to a segmentation of the sound.

In contrast, a changing sound stream has points where it is 
more natural to cut, so a segmentation into sound objects 
results. Such a segmented sound stream would, at least 
in theory, be susceptible to analysis in Schaefferian terms, 
even through machine listening. 

Some of the criteria that Schaeffer introduced seem to be 
easier than others to translate into signal processing rou-
tines. Consider the criterion of sonic substance, which is 
the basis for the seven-step scale from pure tone to noise 
(TOM: 518). Attribute extractors that recognize sinusoids 
and white noise as opposite extremes of some continuum 
do exist. But here, as in an attempt to analyze a sound by 
ear, it is the intermediate positions that leave most room 
for interpretation. For instance, a measure of sensory dis-
sonance (Sethares 2005) may have white noise correspond 
to maximal dissonance, and for a signal of corresponding 
RMS amplitude, a sinusoid would have minimal dissonance 
(silence has maximal consonance according to this model). 
Another measure that would give the desired answers is 
the spectral crest factor. A single spike, which occurs in the 
spectrum of a sine tone, has high crest factor, while a flat 
spectrum has low crest factor. But the spectral crest fac-
tor is not a reliable measure of a sound’s placement in the 
sine-to-noise continuum, because an impulse (in the time 
domain) and a chirp—a sinusoid swept from Nyquist to 
DC—both share the lowest spectral crest factors along with 
white noise. It would be possible to define other attribute 
extractors, which would differentiate between sinusoids 
and white noise, and which would meet different qualifica-
tions in the middle region. This parallels the fact, that one 
can easily construct several different synthesis models that 
can generate a range of sounds from a sine tone to noise at 
the control of a single parameter. 

Some of Schaeffer’s criteria operate on a very abstract lev-
el, and concern such aspects as the mode and degree of 
variation in the sound. When arriving at a definition of the 
term criteria, Schaeffer emphasizes that these are proper-
ties of the perceived sonorous object, and not measurable 
properties of the physical object. In the days when the traité 
was written, acousticians were well aware of the differences 
between physical frequency and perceived pitch, between 
amplitude and intensity, and between duration and per-
ceived temporal length. With the current proliferation of 
signal attribute analysis methods, one should not forget 
this important distinction between physical attribute and 
perceived quality. This relationship, which goes under the 
name anamorphose in Schaeffer’s terminology, is charac-
terized by nonlinear correlations, a kind of warping.

Not only the anamorphoses pose difficulties when one is 
looking for accurately defined correspondences between 
stimuli and perception; it gets even worse for the fact that 
several different acoustic dimensions may sometimes con-
tribute to the same morphological traits. “Remarquons 
aussi que certains critères que nous avons définis ne cor-
respondent à aucun paramètre acoustique simple : c’est le 
cas du grain, de l’épaisseur, du volume, de l’allure, qu’il est 
pourtant facile d’isoler, de désigner à l’attention d’un audi-
teur.” [Let us also remark that certain criteria that we have 
defined do not correspond to any simple acoustic param-
eter. This holds for the grain, the thickness/depth, the vol-
ume, the gait, which it is nevertheless easy to isolate, and 
to direct a listener’s attention to.] (TOM: 502). On the signal 
processing side, a similar abstraction of attribute analysis is 
sometimes carried out, as when an attribute is submitted 
to further statistical analysis. It is common to analyze the 
mean and variance of an attribute, and many other mea-
sures of statistical distribution may be applied as well. How-
ever, it is possible that several quite different sounds share 
a common gait, which is realized as a cyclic, more or less 
regular variation in some unspecified acoustic dimension. In 
such a diffuse case, one could arguably define a signal at-
tribute corresponding to the concept of gait as a rate, depth 
and regularity of variation of the set of all of the other more 
elementary level signal attributes. But it is crucial to note, 
that as one decides upon one particular definition of gait, 
along with the exact details of its signal processing imple-
mentation, one has in effect chosen a particular ‘listening 
strategy’ (if the term applies to machine listening) among 
several conceivable ones.

It is not evident that the démarche of turning the typomor-
phology into rigorously defined signal attributes is the most 
adequate one. In fact, the opposite strategy, which starts 
from arbitrary signal attributes and tries to find what, if any, 
perceptual attribute matches it, may turn out to be a more 
fruitful approach. Musical analysis in general operates by 
reducing the overwhelmingly rich information content of the 
music, be it in notated or recorded form, to a few salient 
facts. In a similar way, signal attribute analysis works by 
reducing information to a measure that will hopefully reveal 
something interesting about the sound. 

A digital signal may be submitted to many kinds of process-
ing, which in some sense will reduce its information content 
(in the information theory sense, this is already implied by 
smoothing out a signal by averaging over a window). Some 
of these processed signals will stand in a more straightfor-
ward relationship to perceptual dimensions of sound than 
others. Arguably, it is irrelevant to know the name or precise 
nature of a perceptual attribute that is closely correlated to 
a signal attribute. What counts is, whether one is able to re-
liably distinguish sounds that have a high value of this signal 
attribute from those having a low value.



To give a concrete example, consider spectral irregularity, 
which is a measure of the jaggedness of the spectral enve-
lope. It is computed by comparing the spectrum to a three-
point smoothed version of itself, where 0 corresponds to 
a smooth spectrum and 1 corresponds to a maximally ir-
regular spectrum (Beauchamp 2007: 55-58). Beauchamp 
notes that “... spectral irregularity appears to have a pro-
found effect on a sound’s timbre” (op.cit: 58). In listening 
tests, many recorded instrument sounds have readily been 
distinguished from the same sounds re-synthesized with 
smoothed spectral envelopes. Beauchamp concludes that: 
“Still, despite its obvious importance, no particular percep-
tual attribute has been found to correspond with spectral 
irregularity” (ibid).

Case Study: the Sinusoid Generator

One of the simplest possible synthesis models would be 
a generator that produces a single sine tone, with a pa-
rameter controlling its frequency. When the waveform is a 
sinusoid, it is straightforward to analyze its frequency, as it 
corresponds to half the number of zero crossings per sec-
ond. Trevor Wishart (1994) developed several original audio 
effects that depend on detection of the signal’s zero cross-
ings. A segment between two zero crossings going in the 
same direction is called a waveset, which is the basic unit 
for various signal operations. Indeed, these effects can be 
regarded as a kind of adaptive audio effects, since they uti-
lize a rudimentary form of signal analysis.

If the frequency of a sinusoid is known to be constant, it 
can be calculated from a minimum of two consecutive zero 
crossings. Assuming that the waveform may have a variable 
number of zero crossings per period, then zero crossing 
rate (ZCR) is no longer a reliable momentaneous frequency 
estimator. But in this case, we know that the wave shape 
will always be a sine wave, so the ZCR is a very suitable 
attribute to analyze.

A simple algorithm for ZCR calculation consists of two zero 
crossing detectors, one operating at the current sample, 
and the other delayed by D samples. If there is a zero cross-
ing between xn and xn-1, an accumulator variable c is incre-
mented by one, and if there is a zero crossing between 
xn-D and xn-D-1, c is decremented by one. The averaged zero 
crossing rate is c/D.

Now, the generator producing a sinusoid at momentaneous 
frequency ƒn,

(2)

operating at sample rate ƒs is connected to the ZCR ana-
lyzer. The output is

(3)

which is divided by 2 since the zero crossing rate indicates 
crossings in both directions, hence twice the number of cy-
cles per second. Next we will need a mapping M from the 
analyzed frequency zn to the frequency ƒn in the generator. 

The user specifies an initial frequency F of the oscillator, 
which is assumed to be constant over the sound’s dura-
tion. There are also user controls for a coupling strength C, 
to be applied in the mapping function, and analysis window 
length in seconds, which are also constant. Then the map-
ping becomes a function of three variables:

(4)

In this simple example, all of the surprise lies in the choice 
of mapping. For several simple mappings, it turns out that 
the oscillator typically starts out at the initial frequency F, 
and gradually makes a transition to a new frequency that 
remains stable for the rest of the sound’s duration. Maps 
having this behaviour include the linear map,

(5)

and the quadratic map,

(6)

both of which produce a rising glissando for C > 0, and a 
falling glissando with an additional decaying vibrato for C < 
0. For large absolute values of C, aliasing effects may occur, 
but generally, either the system gradually stabilizes at one 
frequency, or it approaches a limit cycle resulting in a kind 
of tremolo.

Slightly more complex results can be obtained with the 
sine map:

(7)

Typical for this map is a decaying vibrato, at a frequency that 
is inverse to the analysis window length. Since the ongoing 
frequency adjustment is simply frequency modulation, it is 
not too surprising to find a few of the lowest harmonic par-
tials present in the sound (cf fig. 2) [SOUND EXAMPLE 1].5

5 Ed. Note: Sound Examples may be found on the Sonic Ideas website, http://www.cmmas.org/sonicideas/



In this sinusoidal model, the zero crossing rate corresponds 
to average frequency. But other frequency or pitch analyz-
ers could be used. Momentaneous frequency can be re-
covered from a slowly modulated sinusoid by calculating 
the derivative of the momentaneous phase angle, which 
can be found with the help of the Hilbert transform. A con-
venient formula is:

(10) 

where x(t) and y(t) is a Hilbert transform pair, and A(t) is the 
momentaneous amplitude.

The momentaneous frequency can be substituted for the 
ZCR in the self-adaptive system above. To get compa-
rable results, the momentaneous frequency needs to be 
smoothed over a temporal window of a length correspond-
ing to that of the ZCR. If the oscillator produces a complex 
tone instead of a sinusoid, it is preferable to analyze pitch 
instead of frequency. 

Conclusions

Self-adaptive synthesis may be seen as a metaphor of a 
musician’s interaction with an instrument. Depending on 
traits of the generated sound, the synthesis parameters 
are continuously adjusted. But the choice of an appropriate 
mapping is non-trivial, and the output may be very different 
from anything a musician would produce.

This study of adaptive synthesis does not involve real-time 
interaction, which may seem a strange priority. After all, mu-
sicians possess a unique knowledge and can bring life even 
to the dullest sounding synthesis technique. Besides, in an 
interactive situation, the musician can decide when the 
adaptive synthesis instrument needs new input, if it hap-
pens to get stuck in a less interesting corner of its sonic po-
tentialities. But adaptive systems easily become intractably 
complicated. If the complexity reaches a certain level, very 
little can be predicted about the system’s future behaviour. 
Thus it should make sense, as a first step, to study these in-
struments alone, undisturbed by a musician’s input, in order 
to gain at least a basic understanding of their dynamics.

Clearly the maps (5-7) introduce a bias to the initial frequen-
cy, so that the final frequency that is obtained if the system 
eventually stabilizes is not the same as the initial frequency 
F. A simple way to remove a bias is to high-pass filter the 
signal. A DC-blocking filter can be incorporated in the map-
ping as follows:

(8) 

Here, DC is a second order recursive filter, that not only re-
moves the DC component, but also attenuates frequencies 
near ƒs/2. The DC-blocker has the transfer function:

(9) 

where B is normally set to 0.995. As long as the coupling 
is small, this mapping is indeed well behaved. The oscilla-
tor starts at a frequency that is higher or lower than F, de-
pending on the sign of C, and approaches F in a stepwise 
fashion. For very large values, more bizarre things happen. 
Here, the analysis length is of vital importance, and different 
lengths will cause great qualitative differences in the sound. 
If the window is sufficiently small, the system will settle into 
a cycle of repeated distinct pitches. With slightly longer win-
dows, irregular melodic patterns may result, that balance 
repetition and novelty in a striking way. The beginning of 
one such tune is shown in fig. 3 [SOUND EXAMPLE 2]. It 
does not stabilize into a simple pattern, at least not in the 
first few minutes.

This algorithm, the sine generator with zero crossing rate 
analysis and a mapping that is essentially just a highpass 
filter, provides clear evidence of the fact that even the most 
simple adaptive synthesis model yields unpredictable be-
haviour in a timespan many orders of magnitude longer 
than that of the analysis window. 

Figure 2. Sine map. F = 880 hz, C = 4, window length 0.2 seconds. It takes 
about one minute for the vibrato to decay to an imperceptible level. This 

constant Q filterbank analysis with semitone spacing of analysis bands shows 
the first 20 seconds.

Fig. 3. Mapping with DC-blocker. F = 440hz. C = 8F, window length 0.3 sec-
onds. Almost one half minute is analyzed with the constant-Q filter bank.



If the exact sonic result is the least important, adaptive syn-
thesis may be used to generate raw material that may or may 
not be selected for inclusion in a composition. Alternatively, for 
more adventurous artists, the unpredictability may be essen-
tial. Serendipitous discoveries await the explorer all around.

While the three main components of adaptive synthesis 
models—the generator, the feature extractor, and the map-
ping—are probably of equal importance, we have focused 
on strategies for feature extraction and choices of mapping. 
Schaeffer’s typomorphology may not be suited for a direct 
translation into signal processing routines if one wishes to 
respect the underlying methodology, which proceeds by 
reduced listening. On the other hand, in a footnote Thore-
sen suggested precisely that: “The analysis of sound based 
on reductive listening is that aspect of musical analysis 
that best would render itself for an automatic analysis [...]” 
(Thoresen 2007: 132). This is true, if only because other 
aspects, such as source recognition and semantic analysis 
are harder problems. However, Thoresen concludes that 
the point is “the training of aural consciousness itself” (ibid), 
which indeed remains an indispensable goal. We have also 
noted that problems of taxonomy corresponding to those 
that Schaeffer faced do arise in any attempt to model more 
complicated signal attributes. 

To play an instrument gives rise to a very different experi-
ence from merely listening to it. The same goes for pro-
gramming ‘composed instruments’. In this case, one is well 
aware of the sound’s causality—if not, one tries to find out 
by experiments—and this is, of course, the opposite of re-
duced listening. “La curiosité scientifique, bien que mettant 
en jeu des connaissances hautement élaborées, poursuit 
un but fondamentalement semblable à celui de la percep-
tion spontanée de l’événement” [Scientific curiosity, while 
involving highly elaborated knowledge, pursues a goal fun-
damentally similar to that of the spontaneous perception of 
an event.] (TOM: 115).
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